

SmartKai

An assistant system to prevent damage to ships and port infrastructure

AISS 2020

October 23rd 2020

> Jan Mentjes, Hilko Wiards, Sebastian Feuerstack, Axel Hahn

Content

- Introduction
- Motivation/Problem Statement
- Solution Approach
- Project State
 - Test field
 - Current Challenges
- Outlook

Introduction

OFFIS

Institute for Information Technology in Oldenburg, Germany

eMIR (eMaritime Integrated Reference Platform)

- Verification and Validation of maritime systems
 - Using Scenario-based Testing
 - Providing a test area for autonomous system testing
- Testbed in Germany
 - German Bight, test fields in multiple harbors
 - Traffic Monitoring since 2016

SmartKai

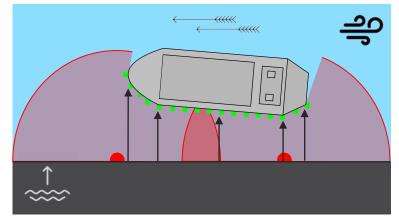
Development of a ship-independent assistance system installed in the port

Motivation

- High traffic volumes on waterways and in ports lead to more frequent hazardous situations
 - Ships maneuver in areas that are difficult to see or assess
 - Complete ship rotations in narrow port basins
 - Pilots must adapt to constantly and sometimes rapidly changing environmental conditions
 - Economic pressure and tight time frames
- This results in more frequent cases of damage
 - Many minor damages are not immediately detected
 - Consequences:
 - Economic damage
 - Lengthy legal proceedings
 - High administrative effort
 - Impairment of port operations

© DPA

© THB


Solution Approach

■ SmartKai – Port Assistance System

- Development of a port- and sensor-based assistance system
- Integration of environmental data to support decision making during difficult maneuvers
 - Tide, current, wind
- Target group-related visual representation of all parameters
 - Distance and speed estimation to quay walls and jetties
- Traceability
 - Recording of possible dangerous situations
 - Assignment to AIS signals or camera images

Partners

NPorts

Provision of the port infrastructure

SICK

- Development of a new LiDAR sensor
 - Specialized for maritime environments
 - Higher distance
- Provision of inventory sensors

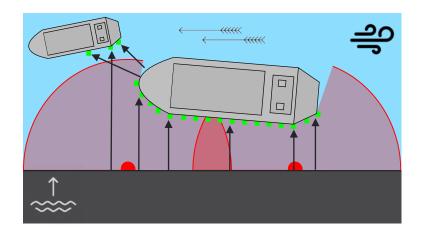
HuMaTects

- Development of the UI for pilots / port captains
 - PPU, Tablet, VR-Glasses

OFFIS

- Test field development
 - Integration of sensor technology
- Development of a data processing pipeline
- Contributions by simulation

Requirements



Pilot survey (functional requirements)

- Distance calculation (max >= 100m)
 - to quay, bow and stern, other ships
- Speed of Approach
- Environmental Data
 - wind, tide, current

■ IMO (non-functional requirements)

- Derived from GPS requirements for (automated) docking purposes (Resolution A.915(22))
- Accuracy <= 0.1m
- Availability (% per 30 days) >= 99.8%
- Fix Time Interval <= 1s</p>

Test campaign

• Questions

- How can port-side assistant systems be tested?
- Which test cases need to be executed?

Requirements derivation

Example:

Distance between two ships → multi ship detection → multiple scanners

Prototype

Prototype implementation

- Located in Wilhelmshaven
- Setup is designed according to the structure of RORO bridges
- Berth location with reduced complexity
 - Located in enclosed area
 - No current and tide changes
- Sensors
 - 2D LiDAR sensors, AIS, Wind, Camera

Kartendaten: © Google Maps 2020

Test campaign

Ships

- Research boot "Josephine" (OFFIS)
- Port operation ship "Argus" (NPorts)

Scenarios

- Considered Use Cases :
 - Docking, Multi-Ship Encounters

© Axel Hahn 2020

- Scenarios are performed multiple times with different parameters
 - Speed, attack angle, distance to quay, maneuvers

Evaluation measurements

- Position measured via DGPS
- Camera images

Kartendaten: © Google Maps 2020

Scenario Example

Cover Maneuver

- Performed with Argus and Josephine
- Josephine is covering Argus

LiDARs are not able to detect the complete hull of both

ships

© Axel Hahn 2020

Kartendaten: © Google Maps 2020

Outlook

- Test field still operating during winter
 - Testing during cold temperatures
- SmartKai is moving to a new location in Cuxhaven
 - Using 3D LiDAR sensors
 - Challenging current and tide changes
- Assistance system development
 - Development of a processing pipeline
 - Verification and Validation of SmartKai
 - Using scenario-based testing and test campaigns

Summary

■ SmartKai – Port Assistance System

- Development of a port- and sensor-based assistance system
 - To prevent damage on ships and harbor infrastructure
 - To support pilot during docking
 - Integration of environmental data to support decision making during difficult maneuvers
- Verification and Validation using scenario-based testing
 - Using the eMaritime Integrated Reference Platform

